A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

نویسندگان

  • Wei Wang
  • Jiapin Chen
  • Aleksandar Zivkovic
  • Huikai Xie
چکیده

A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror's full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems

Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an ...

متن کامل

H∞ Robust Control of a Large-Piston MEMS

Incorporating linear-scanning MEMS micromirrors into Fourier transform spectral 15 acquisition systems can greatly reduce the size of the spectrometer equipment, making portable 16 Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror 17 plate during its large linear scan is a major problem in this application. In this work, an FTS system 18 has been con...

متن کامل

Standing-Wave Transform Spectrometer Based on Integrated MEMS Mirror and Thin-Film Photodetector

In this paper, we report a novel, miniature Fourier transform spectrometer with a linear architecture that works by sampling a standing wave. The spectrometer consists of an electrostatically actuated microelectromechanical mirror with on-resonance displacement of up to 65 m, a thin-film photodetector, and an electrical back plane for actuating the mirror. The integrated device offers mirror st...

متن کامل

A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS) mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded he...

متن کامل

Simulation of a Microgripper with Electrothermal Actuator Using COMSOL Software Based on the Finite Element Method

Micro-electro-mechanical systems (MEMs) are Combination of electrical and mechanical components in Micron dimensions. In recent years, holding, actuating methods and handling of MEMs components such as microgripper, microsensors and etc. have been deeply studied. Microgrippers for handling, positioning and assembling of micro components are very useful so that for clamping need actuation create...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016